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Abstract 

Rapid and direct monitoring of dissolved gases in liquids under strong electromagnetic interference is 

very important. Electronic gas sensors that can be placed into liquids are difficult to work reliably under 

strong electromagnetic fields. The existing optical monitoring techniques for dissolved gases all require 

gas-liquid separation, and are conducted in gas phase, which have poor timeliness. In this paper, a dissolved 

gas monitoring probe without liquid-gas separation under strong electromagnetic interference is proposed. 

We take transformer oil-dissolved acetylene monitoring as an example, an oil-core photonic crystal fiber 

photothermal interferometry probe is proposed and demonstrates the feasibility of trace oil-dissolved 

acetylene directly monitoring without oil-gas separation. The minimum detection limit reaches 1.4 ppm, 

and the response time is about 70 minutes. Due to the good insulation performance and the compact size, 

the all-fiber probe provides applicability to be placed into transformer oil and perform on-line monitoring 

under strong electromagnetic interference. 

Introduction 

Rapid monitoring of dissolved gases in liquids has important implications for biomedical, aerospace, and 

energy fields. In order to realize the rapid detection of dissolved gas, researchers hope to build the sensor 

into the liquid for direct detection. However, electronic sensors are limited to being susceptible to strong 

electromagnetic interference (EMI), and it is difficult to work reliably in a strong electric field environment. 

Therefore, how to realize the rapid and accurate monitoring of dissolved gas in liquid under strong EMI 

has important research value. This paper takes the monitoring of dissolved gas in power transformer oil as 

an example to illustrate the novel monitoring probe.  

Power transformers often work in strong electromagnetic field environments1. If there is a fault inside 

the power transformer, the transformer oil will accelerate the deterioration and decompose to generate small 

molecular hydrocarbon gases2. The new generated gases will continue to dissolve in the oil through 
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convection and diffusion. Since acetylene is one of the most important characteristic gases, the monitoring 

of the dissolved acetylene in transformer oil allows the evaluation of transformer operating conditions3. 

Nowadays, gas chromatography (GC) is a widely applied technique for dissolved gas analysis (DGA). 

However, GC is an off-line test method with low detection frequency, which makes it difficult to detect 

transformer faults in time. Also, GC has some other demerits, such as the overall operation process is 

complicated, the detection results are widely dispersed, and the chromatographic columns are prone to 

contamination. So, it is not suitable for online monitoring. Recently, optical gas sensors are gradually get 

used in-situ online monitoring for its strong anti-electromagnetic interference ability4. Laser absorption 

spectroscopy is a commonly used technique which is mainly based on Beer-Lambert law. It distinguishes 

gases by the ‘finger-print’ absorption lines of different gas molecules, and the minimum detectable limit 

(MDL) is greatly affected by the absorption pathlength. For a better performance in MDL, researchers 

introduced multi-pass gas cells into gas detection. For example, J.M. Dai et al developed a tunable diode 

laser absorption spectroscopy (TDLAS) gas sensing setup with a White cell5, which achieved an accurate 

measurement of 1 ppm acetylene. Similarly, G.M. Ma et al used a Herriott gas cell into trace acetylene 

sensing6. Although multi-pass gas cells increase the absorption pathlength effectively, they are usually 

bulky and require optical calibration. 

Hollow-core photonic crystal fibers (HC-PCFs) are microstructed fibers7-9. Nowadays, HC-PCF is 

popular in gas sensing due to its core can act as a gas cell, and it can be coiled to a small size with low 

dispersion and sufficient light-gas interaction over long distances10-14. W. Jin et al designed a fiber optic gas 

detection system for transformer monitoring with a 1 m HC-PCF was used as a gas cell15. The system 

measured the spectral attenuation and achieved an MDL of 1 ppm for acetylene. In order to further improved 

the sensitivity of the sensing system, phase change induced by photothermal effect in HC-PCF has been 

exploited in gas sensing16-19. When laser gets absorbed by gas molecules, there will be a local temperature 

rise, and the refractive index will change accordingly4,19-22. Photothermal interferometer (PTI) measures the 

accumulated phase change of light over propagation distance and has proven to be very sensitive in trace 
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gas sensing. W. Jin et al firstly introduced an all-fiber PTI system with a 0.62 m HC-PCF gas cell, and 

demonstrated a MDL of 30 ppb for acetylene17. The sensitivity of PTI system is much better than the other 

techniques. 

However, when gas detection techniques get applied to DGA, they all need to be completed in the gas 

phase, and it is impossible to directly monitoring acetylene in transformer oil. It should be noted that due 

to the large oil tank, it takes a long time for oil-dissolved acetylene to diffuse to the sampling port. This 

process may take tens of hours or even days, making it difficult to measure the gas in time. Also, the result 

is greatly affected by the sampling and degassing process, and the analysis results may have large errors. 

Therefore, it is of great significance to carry out the detection of oil-dissolved acetylene directly in power 

transformer. 

In this paper, we report an oil-core photonic crystal fiber (OC-PCF) photothermal interferometry probe 

to monitoring oil-dissolved acetylene. The OC-PCF confines the fluidic sample and propagating light 

within its oil-core. The proposed probe achieves fast response and high sensitivity to oil-dissolved acetylene 

and is immune to the external noise. 

Results  

Analysis of the OC-PCF 

In this paper, the OC-PCF was fabricated from the NKT Photonics’ HC-1550-02 fiber with a core 

diameter of about 11 μm and a length of about 0.85 m. Figures 1a and 1b show the structure of an OC-PCF 

and the scanning electron microscope image of its cross-section. There are 4 microchannels distributed 

evenly along its axial direction, and the outer size of the microchannels were about 3 μm×3 μm (see 

Methods). In addition, both ends of PCF are fusion spliced with single mode fibers (SMFs), and the medium 

can only flow into the core region through microchannels. When the PCF is placed in the transformer oil 

(RI=1.4745), the transformer oil can only enter the core region and the cladding air holes penetrated by 
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microchannels, and an OC-PCF is made. The spatial light field intensity distribution in an OC-PCF is shown 

in Fig. 1d. At this time, the effective mode refractive index of an OC-PCF is about 1.4714. 

Fig. 1 Principle of PTI in OC-PCFs 

 

a, Conceptual view of an OC-PCF with microchannels along its axial direction. b, Scanning electron 

microscope image of the NKT Photonics’ HC-1550-02 fiber used in this work. c. Scanning electron 

microscope image of a microchannel on a PCF. d, The spatial optical mode intensity distribution in an OC-

PCF. 

Since the effective refractive index of the cladding is lower than that of the oil core, the oil-core photonic 

crystal fiber can be equivalent to a traditional step-index fiber, so its light guiding mechanism can be 

explained by the total internal reflection mechanism23-25. The light guiding performance of OC-PCF is 

enhanced compared to HC-PCF. 

From the above simulation results, it can be seen that when part of the cladding air holes and the hollow 

core of a HC-PCF are filled with transformer oil, the two-dimensional photonic crystal structure of the 

cladding quartz-air holes remains basically unchanged, and the optical energy is basically distributed in the 

central oil core. When the laser is transmitted in the oil core, it can fully interact with the oil sample.  

Theory of PT spectroscopy in OC-PCF 
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The basic schematic diagram in an OC-PCF can be shown in Fig. 1a. When an intensity modulated pump 

light travels in the OC-PCF, it interacts with the oil sample and get absorbed by the oil-dissolved acetylene. 

According to the photothermal effect, a periodic heat source will be generated, which modulates local 

temperature and RI of the oil sample. A constant probe light counter propagates with the modulated pump 

light and measures the phase change induced by the periodic heat source. 

Usually, the fundamental mode profile of the light in OC-PBF follows Gaussian distribution, so it is 

assumed that the intensity profile of the pump light can be expressed as 

 ( ) ( ) ( )2 2
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pump

pump

P
I r,t r w S t

w
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Where, pumpP  is the peak power of the pump light, pumpw  is the mode field radius, ( )S t  is the intensity 

modulation function. In this paper, pumpw  is set to 4.03 m, and ( ) ( )=1 sin 2 mS t f t+ , 
mf  is the 

modulated frequency. When the pump light interact with the oil-dissolved acetylene, each acetylene 

molecule is equivalent to a heat source. Therefore, the periodic heat source may be written into 

 ( ) ( )0Q r,t CI r,t=  (2) 

Where, 
0  is the absorption coefficient of acetylene, C is the acetylene concentration. 

In order to study the temperature rise in the oil-core caused by the photothermal effect, the following 

assumptions are made in this paper. Since acetylene is evenly distributed in the OC-PCF, the 

thermodynamic process in the OC-PCF can be regarded as consistent with the thermodynamic process in 

the continuum. The light absorption of trace acetylene gas is very weak. It may be considered that the light 

intensity of the pump light is always constant along the light propagation direction. The light intensity near 

the boundary between the oil-core and the cladding is very small, so the temperature at the boundary 

remains constant at the ambient temperature. 

According to the above assumption, the temperature distribution within the oil-core can be obtained by 

solving the heat transfer equation 
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Where,   is the thermal conductivity of transformer oil, the value is 0.128 W/(m·K);   is the the density 

of transformer oil, equals to 895 kg/m3 at room temperature; pC  is the specific heat capacity of the 

transformer oil, the value is 2100 J/(kg·K); b is the radius of the oil-core. 

When the acetylene concentration is 100 ppm, the absorption coefficient is 1.16 cm-1, the pump light 

power is 40 mW, and the modulation frequency is 20 kHz, the relationship between the temperature change 

at the center of the oil-core and the pump light interaction time is shown in Fig. 2a. It can be seen that, with 

the increase of the interaction time, the temperature in the oil-core gradually increased, and the temperature 

became stable after about 10 ms. Since the intensity modulation frequency of the pump light is 20 kHz, the 

temperature also changes sinusoidally with a period of 20 kHz. After the temperature reaches a steady state, 

Fig. 2b shows the temperature rise distribution within the oil-core, and Fig. 2c shows the temperature 

distribution along the OC-PCF. We can know that the maximum temperature rise occurs in the center of 

the oil core, and the maximum temperature rise is about 2.4 K. Also. the temperature of each point along 

the fiber is basically the same. 

Fig. 2 Computation results of temperature distribution in OC-PCF. 

 

a. Temperature rising at the center of the OC-PCF. b. Temperature rising distribution within the oil-core. 

c. Temperature distribution along the OC-PCF. 

When the local temperature changes, the refractive index of the transformer oil will change accordingly, 

which satisfies26 
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Therefore, the phase change of the probe light due to the photothermal effect can be obtained by4 
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Where, l is the optical pathlength of probe light in OC-PCF, probe  is the wavelength of the probe light, 

probew  is the mode field radius, effn  is the effective refractive index.  

In summary, when the pump light interacts on the oil sample with acetylene dissolved in it, the 

photothermal effect can still be effectively excited. Therefore, the phase modulation changes accumulated 

by the probe light in the OC-PCF can be used to reflect the concentration of the oil-dissolved acetylene. 

Experimental setup 

Fig. 3 depicts the experimental setup of the PTI acetylene monitoring based on OC-PCF. A distributed 

feedback laser (DFB) is used as a pump laser. It is modulated at 20 kHz. A RIO laser is as a probe laser. 

The OC-PBF forms the sensing arm of a Mach-Zehnder interferometer (MZI) while the reference arm is 

made of a single-mode fiber (SMF). The probe light is split into two beams and travels in the sensing arm 

and the reference arm. Two beams of the probe light will be recombined by a fiber coupler and interfere 

with each other at a balanced photodetector. 

For limiting the 1/f noise of the PTI probe, the optical frequency in reference arm is up-shifted by 200 

MHz with the help of an acousto-optic modulator (AOM)27. A heterodyne beatnote at 200 MHz will be 

collected by DAQ, and the modulated phase accumulation will be accurately demodulated through the 

differential cross-multiplication (DCM) algorithm (see Supplementary Discussion) and fast Fourier 

transform (FFT). 

According to Eqn. (5), for the purpose of improving the sensitivity of the PTI probe, one possible solution 

is to increase the optical pathlength of the probe light in the OC-PCF. Therefore, a fiber loop is introduced 



9 
 

in the sensing arm through the fiber couplers. The pump light is coupled into the fiber loop through a optical 

circulator (OC) and gets stopped by that same OC after one revolution. In contrast, the probe light freely 

travels in the fiber loop, and the pathlength in the OC-PCF is greatly increased. 

A fiber Bragg grating (FBG), whose central wavelength equals to the wavelength of the probe light, is 

introduced into the sensing arm. It is used as an optical filter. Since the central wavelength of the FBG 

equals to the wavelength of the probe light, the probe light will be reflected by the FBG and enter the 

sensing arm again, while the residual pump light cannot be reflected by the FBG and will be filtered out. 

Fig. 3 Experimental setup of PTI acetylene sensing with 0.85-m-long OC-PBF. DFB, distributed 

feedback laser, used as pump source; EDFA, erbium-doped fiber amplifier; AWG, arbitrary 

waveform generator; FC1-FC4, fiber couplers, and the splitting ratios are all 50/50; OC, optical 

circulator; FBG, fiber Bragg grating, center wavelength is 1550 nm; AOM, acousto-optic modulator; 

BPD, balanced photodetector; DAQ, data acquisition. 

 

Test of minimum detection limit 

To stimulate the photothermal effect, the wavelength of the pump light is tuned to 1530.37 nm. The 

absorption coefficient at this wavelength is 1.16 cm-1 at room temperature and 1 atm28. The wavelength of 
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the probe light is set to 1550 nm, where the absorption coefficient is much smaller than that at 1530.37 nm. 

In order to amplify the optical power of the pump light, the working mode of the EDFA is set to AGC mode, 

and the amplification factor is constant at 21.0 dB. Thus, the pump light power coupled into the sensing 

arm is about 16 dBm. 

However, the operating environment of the substation is complex, and there are many external factors 

such as temperature changes and vibrations. In addition, when a fault such as partial discharge occurs in 

the power equipment, it is often accompanied by the generation of ultrasonic waves29,30. When the ultrasonic 

signal acts on the sensing arm of the MZI, it will also cause the phase of the probe light get modulated31. 

Since the modulation frequency of the pump light in this paper is set as 20 kHz, and the frequency of 

ultrasonic wave in power equipment is mostly range from 20 kHz to 200 kHz32,33, the ultrasonic signal 

generated by the faults of the power equipment will affect the monitoring accuracy of the OC-PCF 

photothermal interferometry probe. What is more, the irradiation of pump light with high optical power in 

the transformer oil may also introduce temperature rise caused by non-photothermal effect, making the 

monitoring result inaccurate. 

To solve the above problems, the dual-pump-wavelength differential method is introduced in gas 

monitoring34-37. In this method, the DFB is used to output two different pump light with wavelengths λ1 and 

λ2 by changing the temperature. Gas detections with two different wavelengths conduct at almost the same 

time. The phase change caused only by the photothermal effect can be obtained by taking the difference of 

the phase demodulation results at the two wavelengths. The wavelength λ1 is located at the peak of the 

acetylene absorption line, and the wavelength λ2 is located at the weakest point of the acetylene absorption 

line, and λ2 is almost equals to λ1. Through the dual-pump-wavelength differential method, the influence of 

external interference and photoelectric device drift on the monitoring results can be effectively reduced. 

According to the HITRAN database, in this paper, λ1 is set to 1530.37 nm, as sensing pump wavelength; 

and λ2 is set to 1530.71 nm, as reference pump wavelength28. Multiple PTI tests were performed on oil 

samples with an acetylene concentration of 400 ppm (see Methods), and an ultrasonic signal source was 
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placed near the oil cell. The average phase demodulation result of the sensing pump light at 20 kHz was 

about 3.632 mrad; the average phase demodulation result of the reference pump light was about 0.409 mrad, 

and the phase difference between the two wavelengths was about 3.223 mrad. When oil-dissolved acetylene 

was detected by sensing pump light without any external ultrasonic waves, and the average result at 20 kHz 

was about 3.311 mrad.  

Fig. 4: Results based on dual-pump-wavelength differential method  

 

a. The demodulation result when the wavelength of the pump light is 1530.37 nm (the external ultrasonic 

frequency is 20kHz) . b. Demodulation result when the wavelength of pump light is 1530.71 nm (the 

external ultrasonic frequency is 20kHz). c. Demodulation result when the wavelength of pump light is 

1530.37 nm without external noise. d. Monitor results for multiple times 
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It can be seen that the phase change caused only by the photothermal effect can be accurately obtained 

by dual-pump-wavelength differential method, which significantly reduces the serious influence of external 

noise on the accuracy of acetylene monitoring. 

In order to test the MDL of the OC-PCF photothermal interferometry probe based on the dual-pump-

wavelength differential method, the OC-PCF was first placed into an oil cell filled with 1500 mL pure 

transformer oil. And then C2H2/N2 gas mixtures with different concentration were injected into the 

transformer oil. The oil-dissolved acetylene detections were carried out at room temperature. 

The results show that under the same concentration of oil-dissolved acetylene, the demodulated phase 

difference at 20 kHz obtained by the dual-pump-wavelength differential method has small fluctuation and 

good stability. In addition, as the oil-dissolved acetylene concentration increases, the demodulated phase 

difference at 20 kHz increases accordingly. The monitoring results under different oil-dissolved acetylene 

concentrations is shown in Fig. 5 

Fig. 5: The monitoring results under different oil-dissolved acetylene concentrations with a 0.62-m-

long OC-PCF. 
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There is a good linear relationship between demodulated phase differences under dual pump wavelengths 

and oil-dissolved acetylene concentrations, and the linear correlation coefficient R-square is 0.992. The 

fitted equation can be given as: 

 ( )3

2 28 16 10 C H 0 001. C . − =  −  (6) 

Thus, the sensitivity of the proposed probe is about 8.16×10-3 mrad/ppm. The oil-dissolved acetylene 

concentration can be back-calculated using the monitoring results based on the Eqn. (6). When the oil-

dissolved acetylene concentration was 50 ppm, the demodulated phase difference was about 0.394 mrad, 

while the standard deviation is about 0.011 mrad. The MDL in terms of 1σ noise equivalent concentration38 

can be estimated to be 1.396 ppm. 

Test of multi-gases cross-sensitivity 

During the decomposition of transformer oil, some other characteristic gases such as methane, ethylene, 

carbon monoxide, and carbon dioxide are also generated. The other characteristic gases present in the 

transformer oil may also be excited by the pump light to produce photothermal effects, which affect the 

detection accuracy. Therefore, it is necessary to test the cross-sensitivity of other characteristic gases to the 

proposed OC-PCF photothermal interferometry probe. 

A specific concentration of gas mixture was injected into the transformer oil. The main gas components 

are hydrogen (601 ppm), methane (120 ppm), ethylene (113 ppm), ethane (118 ppm), acetylene (62.6 ppm), 

carbon monoxide (611 ppm), and carbon dioxide (2863 ppm). The oil-dissolved acetylene was monitored 

by the proposed OC-PCF photothermal interferometry probe and GC (Agilent 7890B). The results at dual 

wavelength are shown in Fig. 6. The phase difference under the dual wavelength was about 0.419 mrad, 

and the oil-dissolve acetylene concentration in the above oil sample can be back-calculated from Eqn. (6) 

to be about 55.012 ppm. 

The oil samples were detected twice by gas chromatograph, and the acetylene concentrations were 58.171 

ppm and 53.198 ppm, which were basically the same as the acetylene detection results obtained by the 
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proposed OC-PCF photothermal interferometry probe. The maximum error did not exceed ±4 ppm, which 

can meet the accuracy requirements for DGA online monitoring in IEEE Std C57.104-20192. 

At the same time, when the pump light wavelengths were selected as 1530.37 nm and 1530.71 nm, the 

other characteristic gases did not have any adversely influences on the monitoring results of oil-dissolved 

acetylene. The above results verify that the proposed OC-PCF photothermal interferometry probe has 

excellent detection accuracy and does not have the problem of multi-gases cross-sensitivity. 

Fig. 6 Results of multi-gases cross-sensitivity test 

  

 

a. Demodulation result when the wavelength of pump light is 1530.37 nm. b. Demodulation result when 

the wavelength of pump light is 1530.71 nm. c. Result of gas chromatography 

Test of response time 

In order to study the time response of the OC-PCF photothermal interferometry probe, a C2H2/N2 gas 

mixture at a concentration of 75 ppm was continuously injected into the oil sample with an initial acetylene 

(a) (b) 

(c) 
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concentration of 50 ppm for 180 min, and then a 50 ppm C2H2/N2 gas mixture was continuously injected 

for 180 min. During this period, oil-dissolved acetylene was detected by the proposed OC-PCF probe every 

10 min, and the phase demodulation results at 20 kHz under dual wavelengths were recorded. The specific 

results are shown in Fig. 7.  

The demodulated phase amplitude begins to change after about 30 min since the gas mixture got injected 

into the transformer oil. This is because the dissolution and diffusion of acetylene is not completed 

instantaneously, and it can be considered that the acetylene concentration in the oil at the OC-PCF changes 

after 30 min. After that, the phase changes gradually with the increase of gas injection time until it reaches 

stability. 

Fig. 7 Results of time response test 

 

Defining the time taken to reach 90% of the maximum phase change from 10% of the maximum phase 

change as the response time of the OC-PCF photothermal interferometry probe. Therefore, the response 

time of the OC-PCF photothermal interferometry probe is about 70 min.  
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Since the proposed probe can be built into the transformer, it is not necessary to take samples at the oil 

outlet and conduct oil-gas separation, which greatly improves the real-time performance of the monitoring 

system and greatly shortens the fault discovery period to 70 min. 

Discussion  

To solve the problems that the existing dissolved gas analysis techniques are difficult to work under 

strong electromagnetic interference and over-reliance on liquid-gas separation, a dissolved gas monitoring 

fiber-based probe is proposed. This paper takes the monitoring of transformer oil-dissolved acetylene as an 

example, an online monitoring probe based on oil-core photonic crystal fiber and photothermal 

interferometry technique is proposed for the first time. This scheme achieves to directly detect oil-dissolved 

acetylene in the oil-core of an OC-PCF, there is no need to get acetylene separated from transformer oil. 

The OC-PCF is made of NKT Photonics’ HC-1550-02 fiber and transformer oil. In this paper, we 

successfully demonstrate that laser can travel in the oil-core efficiently and can fully interact with the oil 

sample. This is because the transformer oil only enters the PCF core and a small amount of air holes in the 

cladding, there is no significant change in the dielectric coefficient distribution of the cladding, so light can 

be transmitted in the OC-PCF based on the total internal reflection light guiding mechanism. What is more, 

based on the thermodynamic model, we find that when the pump light interacts on the oil sample with 

acetylene dissolved in it, the photothermal effect can still be effectively excited. These provide the 

possibility to monitor oil-dissolved acetylene without oil-gas separation.  

To achieve high sensitivity and low detection limit for direct oil-dissolved acetylene monitoring, this 

paper proposes to introduce a fiber loop into the sensing arm of the Mach-Zehnder interferometer, which 

effectively increases the effective optical pathlength of the probe light in OC-PCF. And we use dual-pump-

wavelength differential method to eliminate the adversely influence caused by external noise (such as 

vibrations in transformer, ultrasonic signal caused by partial discharge and frequency noise introduced by 

probe laser) on the monitoring results. The detection of the oil-dissolved acetylene on the order of µL/L 

can be realized. Experiments have proved that the response time of the proposed OC-PCF photothermal 
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interferometry probe is about 70 min, the minimum detection limit of acetylene reaches 1.39 ppm, and the 

measurement error at low concentration does not exceed ±4 ppm. The results verifies that the developed 

OC-PCF photothermal interferometry probe has high real-time performance, high sensitivity, low 

dispersion, and can meet the needs of oil-dissolved acetylene monitoring in actual power transformer. 

The OC-PCF-based photothermal interferometry probe can be easily applied to monitor other 

characteristic gases in transformer oil. Since the transmission window of HC-1550-02 ranges from 1490 

nm to 1680nm, it covers a range of gases absorption lines of such as CO2, CO, CH4, etc. Therefore, the 

direct detection of multiple gases can be realized only by reasonably changing the wavelength of the pump 

light. It is very beneficial to the research and development of all-component transformer oil dissolved gases 

on-line monitoring system.  

In addition, the interior of the central core region of the photonic crystal can also be filled with different 

liquids according to actual needs, so as to meet the direct measurement of dissolved gases in different 

application environments. 

Methods  

Preparation of OC-PCF 

Both ends of the HC-PCF (NKT Photonics’ HC-1550-02 fiber) were fusion spliced with traditional SMFs 

(Corning’ SMF-28) with the Fujikua LZM-100 fusion splicer. After splicing, the optical transmission loss 

at the wavelength of 1550 nm was only about 3.1 dB. Four microchannels were drilled along a 0.85-m-long 

HC-PCF by focused ion beam (FIB) technique and were spaced 21 cm from each other (see Supplementary 

Fig. 1).  

In this paper, a Strata 400S FIB (Thermo Fisher Scientific) with Ga+ ion source was applied. Due to the 

large aspect ratio of microchannels, it is difficult to achieve low-loss, small-diameter microchannel 

processing. Therefore, the acrylic polyester coating layer on the surface of HC-PCF should be first removed 
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before FIB processing. The outer size of the microchannels is about 3 μm×3 μm. The loss introduced by a 

single microchannel is only about 0.13 dB at the wavelength of 1550 nm. 

Place the processed HC-PCF into transformer oil, and the transformer oil will flow into the hollow core 

region through microchannels, and finally an OC-PCF gets formed.  

The waveguide simulations  

Simulations of the optical waveguide was conducted by using COMSOL Multiphysics 2D 

‘Electromagnetic waves, Frequency Domain’ module. The silica refractive index
2SiO 1 45n .= , the air 

refractive index air 1n =  and the transformer oil refractive index 
oil 1 4745n .=  were entered into the 

calculation. The effective mode refractive index of OC-PCF was calculated about 1.4714 at a wavelength 

of 1.55 μm.  

Preparation of oil samples 

At room temperature and atmospheric pressure, by using two mass flow controllers to control the flow 

speed of acetylene and nitrogen, the preparation of gas mixture with different volume concentrations is 

achieved. The mixed gas is then continuously injected into the transformer oil by an aeration tube and 

stirred by a mechanical stirrer to accelerate the dissolution. 

Data Availability 

All data in main text and supplementary information is available from the corresponding authors upon 

reasonable request. 

Code Availability 

The codes that were used in this study are available upon request to the corresponding author. 
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